How your house works!

An EZ guide & workbook to Home Health principles
Acknowledgements

I would like to thank the wonderful staff at HUD for making a program like this a reality, the Opportunity Council for making this project happen, for all the great clients I have come to know in the Healthy Homes Program, Dave Finet for being a great Director and special thanks to Dave Blake for bringing me into the wonderful building science community!

Reproduction encouraged!
Please contact:
Erin Hamernyik (360) 756-8130 @ erinhfidalgo.net or erinhamernyik@earthlink.net
What’s Inside

This booklet highlights many important aspects of your home that relate to health.

We hope that by understanding your home better, you will recognize the conditions that are within your power to control, leading to a healthier, happier place to live!
The Basic Elements important to Home Health

1. Cold Air
2. Moisture, Vapor pressure, Soil gases
3. Crawlspace
4. Furnace ductwork
5. Humidity
6. Moisture
7. Cold Air
8.
9.
10.
11.

Healthy Homes Program
The Basic Elements of Home Health – the details & solutions

1. The weather in colder climates, particularly rain, provides moisture access on and around our homes. **S** Preventing moisture intrusion is top priority.

2. The moisture provided by rain & snow seeps into the ground. This moisture is then converted to vapor, creating a humidity increase in the ground. Other gases, known as soil gases, can also rise from the ground into our homes. Water close to the home causes structural damage. **S** Check gutters, create slope away from home, put in curtain drains.

3. The crawlspace may contain water, mold & pests. Unless specific measures are taken to isolate the crawlspace from the rest of your home, you are breathing air from your crawlspace. **S** Apply a 6 mil poly barrier to ground in crawl space. Air seal all penetrations to crawlspace.

4. Ductwork distributes the heat in your home, but also creates pressures that push and pull air from potentially undesirable places in your home. **S** All ductwork should be air sealed.

5. Indoor humidity may be created by showers, cooking, cleaning, and vapor pressures from the crawlspace and ground. **S** Humidity must be controlled.

6. Windows can leak (either cold air or water), or be of a low R-value, meaning they do not resist cold temperatures very well. This can lead to condensation and mold growth around your windows. **S** Windows should be updated to current energy efficiency standards, and be caulked and sealed in place.

7. The land around your home may be sloped or flat. It is best to have the ground slope away from your home at all times to allow water to move away from your home. Homes on slopes may encounter: springs or high amounts of surface water. **S** This water must be allowed to move around your home, not into it. Curtain drains, drain pipe.

8. Attics can leak air from the pressures of wind, heat or ductwork. **S** They should be air sealed to make sure insulation & other contaminants do not get in the living space. Attic access doors, light fixtures and furnace return grilles should be checked.

9. The roof is the most important structure of your home. It should not leak. Unattended roof leaks create exponential damage i.e. leaky roofs = leaky inside walls, ceilings etc.. **S** Maintain your roof, replace when necessary, plan your replacement, DO NOT WAIT!

10. Heat rises in the home. This is caused in part by Stack Effect. Stack Effect can push and pull air through your home, creating pressures. **S** Air sealing the attic can lessen the amount of heated air that leaves your home & limit flow of contaminants.

11. Exhaust fans ventilate bathrooms, ranges or your whole house. Make up air sources must be provided mechanically, through inlets or through opened windows. **S** Exhaust fans are necessary in the NW, run at least 45 min after the shower.
Houses are holey...kinda like Swiss cheese

Air moves through holes, cracks and other penetrations within your home. The forces of wind, mechanical ventilation, & stack effect pull and push air around.

That means air from your crawlspace can move into your home for example.
Warm air rises

Stack Effect

Crawl Space / Ground
Temperature and Convection

Temperature differences cause convection & air flow movement
Temperature throughout the home

What happens in cool/un-ventilated areas of the house?

General rules: Keep areas against outside walls clear, Be sure each room has adequate heat, ventilation & air flow.

Outside walls/windows tend to be cooler, creating a surface cool enough to condense moisture from the air like a glass of ice water. This happens especially if the room itself is always cool or higher in humidity or both.

Furniture placed tight against outside walls does not allow air flow, creates a cool, high relative humidity area for moisture to condense, often resulting in mold growth. Leaving an air space of even an inch can help!
Temperature & Humidity

Warmer air holds more moisture

Example: Say we have air with a certain amount of moisture. Now put that air in a 70º room and a 65º room. Look how the Relative Humidity changes.

<table>
<thead>
<tr>
<th></th>
<th>Temp</th>
<th>Relative Humidity</th>
</tr>
</thead>
<tbody>
<tr>
<td>#1</td>
<td>70ºF</td>
<td>RH 40%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mold will not grow</td>
</tr>
<tr>
<td>#2</td>
<td>65ºF</td>
<td>RH 60%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mold will Grow over time</td>
</tr>
</tbody>
</table>
Humidity

Too high - 50% RH and above

Just right – 40-50%

How do you know?
Check your humidity gauge. (hygrometer)

When Relative humidity is too high

Molds
Dust mites
Bacteria & Virus
Materials in/of home begin to break down
Mold Spores are everywhere... that’s OK

Dry Warm Wall

Spores

Mold won’t grow

Cool Wall

Spores

Mold may grow

Cool Wall

Air above 50% Relative Humidity

Growing Spores

Mold will grow

It’s the conditions that count!
Pressures move Pollutants through Pathways

Pathways

Pollutants are pushed or pulled by pressures through pathways!

PEOPLE!

Pressures

Pollutants

People can be in direct contact with pollutants.
EXAMPLE: moldy wall surface

People can be indirectly in contact with pollutants via pathways.
EXAMPLE: moldy crawlspace, air moves through plumbing holes to you
Pollutants (what are the sources)
Molds/Mildews
Toxic chemicals
Rodents
Smoke
CO

Pathways (where is air getting through)
Holes
Cracks
Crevices
Plumbing/Electrical Penetrations

Pressures (what are the movers)
Home Temperature
Air Movement (fans, heater, temp)
Weather Outside (wind, temp)
Worksheet – Pressures & Pathways

Pressures

Home Humidity
(Identify RH in each room)

Pathways in your home

Plumbing/Electrical Penetrations

Pollutants in your home

Where do you spend your time?

1. Name all the rooms in your house
2. How they are used
3. How often they are used
4. Doors routinely open or closed? Why?

Room: __
How is it used: __________________________________
How often (put hours)________________________________
Doors routinely open or closed? Why?_______________

Room: __
How is it used: __________________________________
How often (put hours)________________________________
Doors routinely open or closed? Why?_______________

Room: __
How is it used: __________________________________
How often (put hours)________________________________
Doors routinely open or closed? Why?_______________

Room: __
How is it used: __________________________________
How often (put hours)________________________________
Doors routinely open or closed? Why?_______________
Where do you spend your time?

1. Name all the rooms in your house
2. How they are used
3. How often they are used
4. Doors routinely open or closed? Why?

Room:______________________________________
How is it used:________________________________
How often (put hours)__________________________
Doors routinely open or closed? Why?____________

Room:______________________________________
How is it used:________________________________
How often (put hours)__________________________
Doors routinely open or closed? Why?____________

Room:______________________________________
How is it used:________________________________
How often (put hours)__________________________
Doors routinely open or closed? Why?____________

Room:______________________________________
How is it used:________________________________
How often (put hours)__________________________
Doors routinely open or closed? Why?____________
Worksheet – Floor Plan - Example

Entry

Living Room

Dining

Kitchen

Chem storage

Exhaust Fan

Furnace

Laundry

Chem storage

Bedroom

Bathroom

Nighttime

Moisture Source

Chem storage

Exhaust Fan

Moisture Source
Worksheet – Floor Plan (draw your own!)
Heating System Types

Forced Air – has built in circulation

Electric or Gas

+ Moves air
 Can filter air
 Heats air
 Can include fresh air ventilation

- Must have filter (HEPA)
 Filter must be changed
 Vents must be cleared
 Duct work

Radiant – relies on convection & conduction

Wood stove
 In floor
 Baseboard
 Hot Water/Steam wall units

+ Heats materials
 Can be more quiet
 No ducts

- Can create cold spots if
 only one source i.e. woodstoves
 & baseboard heaters
 Requires ventilation/circulation
#1 Problem of homes & Occupants.....

Unattended Leaks

Soil gases & Moisture from the ground (under the house)

MOISTURE!!!!

Humidity from people, showers & cooking
How to control moisture

Fix Leaks Promptly

Open Windows

Install vapor barrier/ventilate

Bath fan on during and after shower for 45 minutes!

MOISTURE!!!!

VENTILATE!!!
Properly ventilate through Spot fans & whole house ventilation fans, and open windows
Ventilation….the moisture mover!

Always run the bath fan during shower

Run for at least 45 minutes

Use range fan while cooking

Install fresh air make up when necessary (air ports when necessary)

Why?

Spot ventilation such as bathroom fans remove moisture at the source

Moist air created from showers, baths, cooking and dryers venting into the home create high humidity leading to mold and dust mite problems
#1 Killer of Occupants.....

You can’t see it.....

Sometimes you can’t smell it (unless the gas is scented).....

CO

Carbon Monoxide!!!!

Sources

Poorly vented combustion appliances
Gas leaks to those appliances
Fires that die out and smolder without adequate ventilation.
Gas water heaters, furnaces, ranges, dryers, wall heaters back-drafting and spilling
Starting cars in attached garages, letting them warm up
What you can do about CO

Install a CO detector

Have all combustion appliances tested by qualified technicians for back drafting and spillage, worst case tests

Have all gas appliances installed by a professional

Have your appliances regularly serviced by a professional

Be aware of the signs of CO poisoning which include:

- Headaches
- Drowsiness
- Flu like symptoms
- Memory loss

(Whole families may get these symptoms at once!)

When starting car in attached garage, be sure to have doors to home closed. Air seal those doors. Open garage door first, before starting car. Be sure to leave garage door Open for sometime after you leave when possible.
Contaminants in the home...

☐ Environmental Tobacco Smoke
☐ Mold
☐ Dust mites
☐ Laundry Detergent
☐ Fabric Softener
☐ Cleaning Agents
☐ Paints
☐ Insecticides
☐ Pets
☐ New carpet/furniture
☐ Lead (if home built before 1978)
☐ CO (if you have combustion appliances)

Check off what you have...
Write down on the following page
Specifically each one and its location
Contaminants in the home... where

Environmental Tobacco Smoke -
Mold -
Dust mites -
Laundry Detergent -
Fabric Softener -
Cleaning Agents -
Paints -
Insecticides -
Pets -
New carpet/furniture –
Lead – (peeling paint)
CO (if you have combustion appliances) -
Take control of the contaminants in your home

1. Don’t smoke.
2. Don’t bring toxic items into your home.
3. Keep relative humidity levels in your home within 40-50%.
4. Clean often with non-toxic cleaners (less dust = better health).
5. Get furniture that is free of formaldehydes. Be sure to ventilate your home at a much higher rate during & after installation.
6. Use low VOC paints, provide adequate ventilation and drying heat to expedite off-gassing.
7. Where possible replace carpet with hard surface flooring.
8. Be sure your combustion appliances have regular maintenance by a qualified technician.
9. Make sure all painted surfaces are kept in good condition.
10. Install a CO detector if you have a combustion appliances, woodstove, or fireplace.
Top 10 Preventive Maintenance list

<table>
<thead>
<tr>
<th>Where</th>
<th>What to look for</th>
<th>How often</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Roof & Gutters</td>
<td>Leaks
Condensation on surface in attic
Missing shingles
Disconnected downspouts, disconnect from roof, drainage toward foundation, splatter against house</td>
<td>During Rainy season
After wind storms</td>
</tr>
<tr>
<td>2. Plumbing</td>
<td>Faucet leaks, pipe leaks, sink leaks, under sinks</td>
<td>Monthly, be aware with use</td>
</tr>
<tr>
<td>3. Combustion appliances</td>
<td>Regular Maintenance
Install CO detector</td>
<td>Be aware of alarm</td>
</tr>
<tr>
<td>4. Appliances</td>
<td>Leaks from piped appliances, washing machine, dishwasher, refrigerator (if water dispense)</td>
<td>Monthly, be aware with use</td>
</tr>
<tr>
<td>5. Humidity</td>
<td>Levels above 50% Relative Humidity in home</td>
<td>Daily, read gauge, get sense of level of humidity in home.</td>
</tr>
<tr>
<td>6. Pests</td>
<td>Feces, frass, chewed materials, check corners, noises</td>
<td>Always ; when cleaning</td>
</tr>
<tr>
<td>7. Crawlspace</td>
<td>Moisture, pooling of water, dripping sounds, smells, droppings, change of smells. Take a peek with flashlight through access door.</td>
<td>Monthly during winter</td>
</tr>
<tr>
<td>8. Windows</td>
<td>Check for leaks, drafts, mold, condensation</td>
<td>Be aware, mostly in winter</td>
</tr>
<tr>
<td>9. Exterior walls</td>
<td>Check inside wall surfaces baseboards, corners, especially if stuff is crammed next to wall</td>
<td>Monthly during winter</td>
</tr>
<tr>
<td>10. Home</td>
<td>Changes in noises, smells and temperatures</td>
<td>Be aware, mostly in winter.</td>
</tr>
</tbody>
</table>
Importance of maintenance

Big problems usually grow from small problems

+ Maintenance catches things before they get too big
+ Smaller problems are solved more easily than big ones…
+ And are less expensive

Consistent maintenance = Healthy Home

Maintenance, the Occupant & Health

As a home owner or occupant, the space you live in affects your health.

By being proactive and caring for your home through maintenance you are caring for your health & your families health!
Effects of Preventive Maintenance

1. Overall health improvement, especially asthma, respiratory ailments.
2. Your home is less expensive to take care of.
3. Problems that do arise are usually smaller when you find them.
4. Usually avert big damages.
5. You are in more control of your environment.
6. Your home is a nicer place to live!
Pulling it all together

There are many things you can do to create a Healthy Home. This booklet outlines most of the concepts you need to understand your home.

By understanding how your home works and following the ideas listed in this book you are taking charge of your own health!